FA 2017: Chronic hypoxic pulmonary vasoconstriction results in pulmonary hypertension and RVH.
Hypoxic pulmonary vasoconstriction (HPV), also known as the Euler-Liljestrand mechanism, is a physiological phenomenon in which small pulmonary arteries constrict in the presence of alveolar hypoxia (low oxygen levels). By redirecting blood flow from poorly-ventilated lung regions to well-ventilated lung regions, HPV is thought to be the primary mechanism underlying ventilation/perfusion matching.[1][2] The process might initially seem counterintuitive, as low oxygen levels might theoretically stimulate increased blood flow to the lungs to increase gas exchange. However, the purpose of HPV is to distribute bloodflow regionally to increase the overall efficiency of gas exchange between air and blood. While the maintenance of ventilation/perfusion ratio during regional obstruction of airflow is beneficial, HPV can be detrimental during global alveolar hypoxia which occurs with exposure to high altitude, where HPV causes a significant increase in total pulmonary vascular resistance, and pulmonary arterial pressure, potentially leading to pulmonary hypertension and pulmonary edema. Several factors inhibit HPV including increased cardiac output, hypocapnia, hypothermia, acidosis/alkalosis, increased pulmonary vascular resistance, inhaled anesthetics, calcium channel blockers, positive end-expiratory pressure (PEEP), high-frequency ventilation (HFV), isoproterenol, nitric oxide, and vasodilators.
submitted by โalexb(53)
Hypoxic pulmonary vasoconstriction (HPV), also known as the Euler-Liljestrand mechanism, is a physiological phenomenon in which small pulmonary arteries constrict in the presence of alveolar hypoxia (low oxygen levels).
While the maintenance of ventilation/perfusion ratio during regional obstruction of airflow is beneficial, HPV can be detrimental during global alveolar hypoxia which occurs with exposure to high altitude, where HPV causes a significant increase in total pulmonary vascular resistance, and pulmonary arterial pressure, potentially leading to pulmonary hypertension and pulmonary edema.
https://en.wikipedia.org/wiki/Hypoxic_pulmonary_vasoconstriction